
Introduction to Quantum Computation Sevag Gharibian
Summer 2020, University of Paderborn

Lecture 1: Introduction and Linear Algebra Review

I recall that during one walk Einstein suddenly stopped, turned to me and asked whether I really
believed that the moon exists only when I look at it.
— Abraham Pais.

1 Introduction

Welcome to Introduction to Quantum Computation! In this course, we shall explore the subject of quantum
computation from a theoretical computer science perspective. As the quote by Abraham Pais above fore-
shadows, our story will involve surprising twists and turns, which will seem completely at odds with your
perception of the world around you. Indeed, in a quantum world, a single particle can be in two places simul-
taneously; two particles can be so strongly “bound” that they can appear to communicate instantaneously
even if they are light-years apart; and the very act of ”looking” at a quantum system can irreversibly alter
the system itself! It is precisely these quirks of quantum mechanics which we shall aim to exploit in our
study of computation.

The basic premise of quantum computing is “simple”: To build a computer whose bits are not represented
by transistors, but by subatomic particles such as electrons or photons. In this subatomic world, the pertinent
laws of physics are no longer Newton’s classical mechanics, but rather the laws of quantum mechanics. Hence,
the name “quantum computing”. Why would we ever want to build such a computer? There are a number of
reasons. From an engineering standpoint, microchip components have become so small that they encounter
quantum effects which impede their functionality. To a physicist, the study of quantum computing is a
natural approach for simulating and studying quantum systems in nature. And to a computer scientist,
quantum computers are remarkable in that they can solve problems which are believed to be intractable on
a classical computer!

The field of quantum computing, which arguably started with famed physicist Richard Feynman’s ideas
(1982) for efficiently simulating physical systems (although it should be noted that ideas for crytography
based on quantum mechanics date back to Stephen Wiesner around 1970), is nowadays far too large to be
captured in a single course. Here, we shall focus on a broad introduction which aims to cover topics such as:
What is quantum mechanics, and how can it be harnessed to build a computer? What kind of computational
problems can such a computer solve? Are there problems which are hard even for a quantum computer?
And finally, what does the study of quantum computing tell us about nature itself? Even if this course is the
last time you encounter the topic of quantum computing, the experience should hopefully leave you with an
appreciation for the fine interplay between the limits of physics and computing, as well as strengthen your
background in Linear Algebra, which is useful in many other areas of computer science.

The entire course will take place in the mathematical framework of Linear Algebra, which we now review.
It is crucial that you familiarize yourself with these concepts before proceeding with the course. These notes
contain many exercises intended to help the reader; it is strongly recommended for you to work on these as
you read along.

2 Linear Algebra

This course assumes a basic background in Linear Algebra. Thus, much of what is covered in this section is
intended to be a refresher (although some of the later concepts here may be new to you); we thus cover this
section briskly. Throughout this course, the symbols C, R, Z, and N denote the sets of complex, real, integer,
and natural numbers, respectively. For m a positive integer, the notation [m] indicates the set {1, . . . ,m}.

1

The basic objects we shall work with are complex vectors |ψ〉 ∈ Cd, i.e.

|ψ〉 =

 ψ1

...
ψd

 , (1)

for ψi ∈ C. Recall here that a complex number c ∈ C can be written in two equivalent ways: Either as
c = a + bi for a, b ∈ R and i2 = −1, or in its polar form as c = reiθ for r, θ ∈ R. One of the advantages of
the polar form is that it can directly be visualized on the 2D complex plane:

real axis

imaginary axis

θ

r
(cos θ, sin θ)

Here, the x and y axes correspond to real and imaginary axes, and r denotes the length of the vector
(cos θ, sin θ). For example, observe that 1 can be written in polar form with r = 1 and θ = 0, i.e. 1 is
represented in the 2D plane as vector (1, 0). In this course, the polar form will be used repeatedly. Recall
also that the complex conjugate of c, denoted c∗, is defined as a − bi or re−iθ, respectively. Finally, the
notation |·〉 is called Dirac notation, named after physicist Paul Dirac, and is simply a useful convention for
referring to column vectors. The term |ψ〉 is read “ket ψ”.

Exercise. The magnitude or “length” of c ∈ C is given by |c| =
√
cc∗. What is the magnitude of eiθ for

any θ ∈ R? How about the magnitude of reiθ?

Complex vectors shall be crucial to us for a single reason: They represent quantum states (more details
in subsequent lectures). It is thus important to establish some further basic properties of vectors. First, the
conjugate transpose of |ψ〉 is given by

〈ψ| = (ψ∗1 , ψ
∗
2 , . . . , ψ

∗
d) , (2)

where 〈ψ| is a row vector. The term 〈ψ| is pronounced “bra ψ”. This allows us to define how much two
vectors “overlap” via the inner product function, defined as

〈ψ|φ〉 =

d∑
i=1

ψ∗i φi. (3)

The inner product satisfies (〈ψ|φ〉)∗ = 〈φ|ψ〉. The “length” of a vector |ψ〉 can now be quantified by
measuring the overlap of |ψ〉 with itself, which yields the Euclidean norm, ‖ |ψ〉 ‖2 =

√
〈ψ|ψ〉.

Exercise. Let |ψ〉 = 1√
2
(1, i)T ∈ C2, where T denotes the transpose. What is 〈ψ|? How about ‖ |ψ〉 ‖2?

With a norm in hand, we can define a notion of distance between vectors |ψ〉, |φ〉, called the Euclidean
distance: ‖ |ψ〉 − |φ〉 ‖2. This distance will play the important role of quantifying how well two quantum
states |ψ〉 and |φ〉 can be “distinguished” via measurements. Two useful properties of the Euclidean norm
are:

1. (Positive scalability) ‖ a|ψ〉 ‖2 = |a| ‖ |ψ〉 ‖2 for a ∈ C.

2

2. (Triangle inequality) For any |ψ〉, |φ〉, one has ‖ |ψ〉+ |φ〉 ‖2 ≤ ‖ |ψ〉 ‖2 + ‖ |φ〉 ‖2.

These two properties can be used to show that for all |ψ〉 ∈ Cd, ‖ |ψ〉 ‖2 ≥ 0.

Exercise. Let |ψ〉 = 1√
2
(1, i)T ∈ C2 and |φ〉 = (1

2 ,
√

3
2)T ∈ C2, where T denotes the transpose. What is

‖ |ψ〉 − |φ〉 ‖2?

Orthonormal bases. A much more natural way to represent vectors in this course shall be in terms of
orthonormal bases. Recall that a set of vectors {|ψ〉i} ⊆ Cd is orthogonal if for all i 6= j, 〈ψ|i|ψ〉j = 0, and
orthonormal if 〈ψ|i|ψ〉j = δij . Here, δij is the Kroenecker delta, whose value is 1 if i = j and 0 otherwise.
For the vector space Cd, which has dimension d, it is necessary and sufficient to use d orthonormal vectors
in order to form an orthonormal basis.

One of the most common bases we use is the computational basis, defined for C2 as

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
. (4)

Since {|0〉, |1〉} is an orthonormal basis, any vector |ψ〉 ∈ C2 can be written as |ψ〉 = α|0〉 + β|1〉 for some
α, β ∈ C. We say |ψ〉 is normalized when it has length 1, i.e. ‖ |ψ〉 ‖2 = 1; equivalently, this means

|α|2 + |β|2 = 1.

Exercise. Let |ψ〉 = 1√
2
(1, 1)T ∈ C2. Write |ψ〉 in terms of the computational basis for C2. Is |ψ〉

normalized?

The computational basis is easily extended to d-dimensional vectors by defining |i〉 ∈ Cd as having a 1 in
position i and 0 elsewhere (here, 0 ≤ i ≤ d−1). In this course, vectors labelled by integers (e.g. |1〉, |3〉 ∈ Cd)
will be assumed to be d-dimensional computational basis vectors.

Linear maps. Given a vector |ψ〉 ∈ Cd, we are interested in how |ψ〉 can be “mapped” to other vectors.
The maps we consider are linear, which by definition means that for map Φ : Cd 7→ Cd and arbitrary∑
i αi|ψi〉 ∈ Cd,

Φ

(∑
i

αi|ψi〉

)
=
∑
i

αiΦ(|ψi〉). (5)

The set of linear maps from vector space X to Y is denoted L(X ,Y). For brevity, we use the shorthand
L(X) to mean L(X ,X).

Exercise. Consider the linear map Φ : C2 7→ C2 with action Φ(|0〉) = |1〉 and Φ(|1〉) = |0〉. If |ψ〉 =
α|0〉+ β|1〉, what is Φ(|ψ〉)?

The exercise above teaches us an important lesson — the action of a linear map Φ ∈ L(Cd) is fully charac-
terized by understanding how Φ acts on a basis for Cd. This leads to a natural representation for Φ in terms
of a matrix.

Recall that a d × d matrix A is a two-dimensional array of complex numbers whose (i, j)th entry is
denoted A(i, j) ∈ C for i, j ∈ [d]. To represent a linear map Φ : Cd 7→ Cd as an d× d matrix AΦ, we use its
action on a basis for Cd. Specifically, define the ith column of AΦ as Φ(|i〉) for {|i〉} the standard basis for
Cd, or

AΦ =
[

Φ(|0〉),Φ(|1〉), . . . ,Φ(|d− 1〉)
]
. (6)

In this course, we use both the matrix and linear map views interchangeably, with the application notion
clear from context.

3

Exercise. What is the 2 × 2 complex matrix representing the linear map Φ from the previous exercise?
What is the linear map whose matrix (with respect to the computational basis) is the identity matrix

I =

(
1 0
0 1

)
? (7)

The product AB of two d× d matrices A and B is also a d× d matrix with entries

AB(i, j) =

d∑
k=1

A(i, k)B(k, j). (8)

Note that unlike for scalars, for matrices it is not always true that AB = BA. In the special case where
AB = BA, we say A and B commute.

Exercise. Define

X =

(
0 1
1 0

)
and Z =

(
1 0
0 −1

)
. (9)

Do X and Z commute?

We would like to understand how “large” the output space of a linear map A ∈ L(Cd) is. To this end,
the image of A is the set of all possible output vectors under the action of A, i.e.

Im(A) :=
{
|ψ〉 ∈ Cd | |ψ〉 = A|φ〉 for some |φ〉 ∈ Cd

}
. (10)

The rank of A is the dimension of its image.

Exercise. Suppose rank(A) = 0. What is Im(A)? How about the case of rank(A) = d?

The set of all vectors sent to zero by A is called its null space, i.e. Null(A) :=
{
|ψ〉 ∈ Cd | A|ψ〉 = 0

}
. It

holds that dim(Null(A)) + dim(Im(A)) = d (here dim denotes dimension).

Exercise. Is there a non-zero vector in the null space of matrix Z from Equation (9)? (Hint: Multiply an
arbitrary vector |ψ〉 = α|0〉 + β|1〉 by Z and see if you can make the zero vector pop out.) What does the
answer tell you about rank(Z)? What is the null space of matrix

B =

(
1 0
0 0

)
, (11)

and what is rank(B)?

Matrix operations. Matrices encode the operations which we are allowed to perform on our vectors.
There are some simple operations on matrices themselves which will show up repeatedly in our discussions.
The first three of these are the linear maps complex conjugate, transpose and adjoint, defined respectively as

A∗(i, j) = (A(i, j))∗ AT (i, j) = A(j, i) A† = (A∗)T . (12)

Note that (AB)† = B†A†, and similarly for the transpose. These operations apply to vectors as well so that
〈ψ|, defined in Equation (2), is simply |ψ〉†. The adjoint will especially play a crucial role in this course.

4

Exercise. Calculate X† and Z† for X and Z from Equation (9), as well as the adjoint of

A =

(
1 2
3 eiπ/2

)
. (13)

Another useful function on matrices is the trace, which is simply a linear map Tr : L(Cd) 7→ C summing

the entries on the diagonal of A, i.e. Tr(A) =
∑d
i=1A(i, i). A wonderful property of the trace is that it is

cyclic, i.e. Tr(ABC) = Tr(CAB). This implies that even if A and B do not commute, i.e. AB 6= BA, it
nevertheless holds that Tr(AB) = Tr(BA)!

Exercise. In a previous exercise, you showed that X and Z do not commute. Compute Tr(XZ) and
Tr(ZX) and verify that they are indeed the same.

Outer products. The Dirac notation lends itself particularly well to an alternate description of matrices
via outer products. For vectors |ψ〉, |φ〉 ∈ Cd, the outer product is |ψ〉〈φ| ∈ L(Cd); unlike the inner product,
the outer product yields a d × d matrix. It can be computed straightforwardly via the rules of matrix
multiplication. For example,

|0〉〈0| =
(

1
0

)(
1 0

)
=

(
1 0
0 0

)
and |1〉〈0| =

(
0
1

)(
1 0

)
=

(
0 0
1 0

)
. (14)

More generally, the matrix |i〉〈j| ∈ L(Cd) has a 1 at position (i, j) and zeroes elsewhere. This yields a
simple yet neat trick: A matrix A ∈ L(Cd) written in the computational basis can hence be expressed as∑
ij A(i, j)|i〉〈j|. It is thus easy to evaluate expressions of the form

〈i|A|j〉 = 〈i|

∑
i′j′

A(i′, j′)|i′〉〈j′|

 |j〉 =
∑
i′j′

A(i′, j′)〈i|i′〉〈j|j′〉 =
∑
i′j′

A(i′, j′)δii′δjj′ = A(i, j), (15)

where the third equality follows since {|i〉} forms an orthonormal basis for Cd. In other words, 〈i|A|j〉 simply
rips out entry A(i, j)! These types of expressions will be ubiquitous in the setting of quantum measurements.

Exercise. Observe that X from Equation 9 can be written X = |0〉〈1| + |1〉〈0|. What is 〈0|X|0〉? How
about 〈0|X|1〉? How can you rewrite Tr(X) in terms of expressions of this form?

Eigenvalues and eigenvectors. With outer products in hand, we can discuss one of the most fundamental
tools in our Linear Algebraic toolkit — eigenvalues and eigenvectors. Given any matrix A ∈ L(Cd), an
eigenvector is a special non-zero vector satisfying the equation

A|ψ〉 = λ|ψ〉, (16)

for some λ ∈ C which is the corresponding eigenvalue.

Exercise. Show that |+〉 = 1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉) are both eigenvectors of X from

Equation (9). What are their respective eigenvalues?

The outer product can now be used to state an expression which will be used repeatedly in this course.
For any matrix A satisfying AA† = A†A (such matrices are called normal ; most matrices in this course will
be normal), we can decompose A in terms of its eigenvalues and eigenvectors as

A =

d∑
i=1

λi|λi〉〈λi|, (17)

5

where λi and |λi〉 are the eigenvalues and corresponding eigenvectors of A. This is called the spectral
decomposition of A. The spectral decomposition is useful for a few reasons. First, it tells us exactly how A
acts on Cd; this is because the eigenvectors |λi〉 ∈ Cd can be chosen1 to form an orthonormal basis for Cd.
Thus, any vector |ψ〉 ∈ Cd can be written in terms of the eigenvectors of A, i.e. |ψ〉 =

∑
i αi|λi〉 for some

αi ∈ C. The spectral decomposition also immediately reveals the rank of A; specifically, rank(A) is just the
number of non-zero eigenvalues of A. Finally, Tr(A) has a very simple expression in terms of A’s eigenvalues
— Tr(A) =

∑
i λi. Let us quickly prove this last claim:

Tr(A) = Tr

(∑
i

λi|λi〉〈λi|

)
=
∑
i

λiTr(|λi〉〈λi|) =
∑
i

λiTr(〈λi|λi〉) =
∑
i

λi. (18)

Here, the second equality follows since the trace is linear, the third by the cyclic property of the trace, and
the last since the eigenvectors |λi〉 are orthonormal.

Exercise. In the previous exercise, you computed the eigenvectors and eigenvalues of X. Use these to
write down the spectral decomposition of X, and verify that it indeed evaluates to X. Next, recall that
X|0〉 = |1〉. Note that |0〉 = 1√

2
(|+〉 + |−〉). Use this and the spectral decomposition of X to verify that

indeed X|0〉 = |1〉.

Finally, recall that the eigenvalues of A ∈ L(Cd) can be computed as the roots of the degree-d charac-
teristic polynomial of A, pA, defined

pA(λ) = det(λI −A), (19)

where the determinant det can be defined recursively as

det(A) =

d∑
j=1

(−1)i+jA(i, j) det(Aij). (20)

Here, Aij is the matrix obtained from A by deleting row i and column j, and we define the base case of this
recursion (i.e. a 1 × 1 matrix [c]) as det([c]) = c. This equation holds for any i ∈ [d]. In the special case
when d = 2, this reduces nicely to

det

(
a b
c d

)
= ad− bc. (21)

Exercise. Use Equations (19) and (21) to compute the eigenvalues of Z from Equation (9). Then, plug
these back into Equation (16) to solve for the eigenvectors of Z. What is the spectral decomposition of Z?

Let us close with a simple observation: For any diagonal matrix A (written in the computational basis),
the eigenvalues of A are simply the entries on the diagonal of A, and the eigenvectors are just the compu-
tational basis vectors. In the exercise above, this immediately confirms that the eigenvalues of Z are 1 and
−1 with eigenvectors |0〉 and |1〉, respectively.

1This statement need not hold for non-normal matrices. In fact, one can prove that a matrix is normal if and only if it
admits a spectral decomposition. Non-normal matrices do, however, admit the more general singular value decomposition.

6

